亚洲视频一区二区,国产一区二区网站,国产精品…在线观看,欧美高清正版在线,欧美日韩 国产区 在线观看,亚洲最新视频在线观看

Comparison table of the relationship between valve size and medium velocity

Column:Technical article Time:2019-06-22
It is well known that the flow rate and velocity of the valve mainly depends on the size of the valve, but also with the valve structure type of the resistance to the medium...

It is well known that the flow rate and flow rate of the valve mainly depends on the size of the valve, and the valve structure type of the resistance to the medium, at the same time with the pressure of the valve, temperature and the concentration of the medium and other factors have a certain internal relationship.Valve flow area and flow velocity, flow rate has a direct relationship, and flow rate and flow are interdependent two quantities.When the flow rate is constant, the flow rate is large, the flow area can be smaller;Small velocity, the flow area can be larger.On the contrary, the flow area is large and the velocity is small.The runner area is small and the velocity is high.

 

1, the flow rate of the medium is large, the valve diameter can be small, but the resistance loss is large, the valve is easy to damage.High flow rate, the flammable and explosive media will produce electrostatic effect, resulting in danger;The flow rate is too small, inefficient, and uneconomical.For high viscosity and explosive medium, should be a small flow rate.The flow rate of oil and liquid with high viscosity is selected according to the viscosity, generally 0.1 ~ 2m/s.

2. Generally speaking, the flow rate is known and the flow rate can be determined by experience.Nominal size of valve can be calculated by flow rate and flow rate.

3, the valve size is the same, its structure is different, fluid resistance is not the same.Under the same conditions, the greater the resistance coefficient of the valve, the more fluid flow through the valve velocity, flow rate drop;The smaller the valve resistance coefficient is, the less the flow rate and flow rate decreases through the valve.

 

Common flow rates of various media are shown in the following table:

Fluid nameConditions of use
Velocity(m/s)
Saturated steam
DN>200
DN=200~100
DN<100
30~40
25~35
15~30
Superheated steam
DN>200
DN=200~100
DN<100
40~60
30~50
20~40
Low pressure steamρ<1.0(Absolute pressure)15~20
Medium pressure steamΡ=1.0~4.0(Absolute pressure)20~40
High pressure steamΡ=4.0~12.0(Absolute pressure)40~60

Compressed gas
Vacuum
Ρ≤0.3(Gage pressure)
Ρ=0.3~0.6(Gage pressure)
Ρ=0.6~1.0(Gage pressure)
Ρ=1.0~2.0(Gage pressure)
Ρ=2.0~3.0(Gage pressure)
Ρ=3.0~30.0(Gage pressure)
5~10
8~12
10~20
10~15
8~12
3~6
0.5~3
oxygen
Ρ=0~0.05(Gage pressure)
Ρ=0.05~0.6(Gage pressure)
Ρ=0.6~1.0(Gage pressure)
Ρ=1.0~2.0(Gage pressure)
Ρ=2.0~3.0(Gage pressure)
5~10
7~8
4~6
4~5
3~4
Gas 2.5~15
Semi water gasΡ=0.1~0.15(Gage pressure)10~15
Natural gas 30
NitrogenΡ=5~10(Absolute pressure)15~25

ammonia
vacuum
Ρ<0.3(Gage pressure)
Ρ<0.6(Gage pressure)
Ρ≤2(Gage pressure)
15~25
8~15
10~20
3~8
Acetylene water 
30
5~6
Acetylene water
ρ<0.01(Gage pressure)
ρ<0.15(Gage pressure)
ρ<2.5(Gage pressure)
3~4
4~8
5
chlorine
Gas
liquid
10~25
1.6
氯化氫
氣體
液體
20
1.5
Liquid ammonia
Vacuum
Ρ≤0.6(Gage pressure)
Ρ≤2.0(Gage pressure)
0.05~0.3
0.3~0.8
0.8~1.5

Sodium hydroxide
Concentration 0~30%
Concentration 30%~505
Concentration 50%~73%
2
1.5
1.2
Sulfuric acid
Concentration 88%~93%
Concentration 93%~100%
1.2
1.2
HCl 1.5
Water has a similar viscosity to liquids
Ρ=0.1~0.3(Gage pressure)
Ρ≤1.0(Gage pressure)
Ρ≤8.0Gage pressure)
Ρ≤20~30(Gage pressure)
Heat network circulating water, cooling water
0.5~2
0.5~3
2~3
2~3.5
0.3~1
Water has a similar viscosity to liquidsPressure backwater0.5~2
Water has a similar viscosity to liquidsNo pressure backwater0.5~1.2

Tap water
DirectorΡ=0.3(Gage pressure)
BranchΡ=0.3(Gage pressure)
1.5~3.5
1~1.5
Boiler feed water >3
Steam condensate 0.5~1.5
CondensateGravity0.2~0.5
Hot water 2
Sea water, slightly alkaline water
Ρ<0.6(Gage pressure)
1.5~2.5

Note: the unit of DN value is mm;Ρ value unit is: MPa.


Examples:
 

The resistance coefficient of gate valve is small, only within the range of 0.1 ~ 1.5.Gate valve with large diameter, the resistance coefficient is 0.2 ~ 0.5;Shrinkage gate valve resistance coefficient is larger.

 

The resistance coefficient of globe valves is much larger than that of gate valves, generally between 4 and 7.Y-type globe valve (direct flow) has a small resistance coefficient between 1.5 and 2.Forged steel globe valve resistance coefficient is large, even up to 8.

 

The resistance coefficient of the check valve depends on the structure: swing check valve is usually about 0.8 ~ 2, in which the multi-lobe swing check valve has a larger resistance coefficient;Lift check valve resistance coefficient, up to 12.

 

Plug valve resistance coefficient is small, usually about 0.4 ~ 1.2.

 

The resistance coefficient of diaphragm valve is generally around 2.3.

 

Butterfly valve resistance coefficient is small, generally within 0.5.

 

Ball valve resistance coefficient is small, generally around 0.1.

 

Remark: the resistance coefficient of the valve is the value when the valve is fully open.

 

The selection of valve size should take into account the machining accuracy and dimension deviation of the valve, as well as other factors.Valve size should be adequate, generally 15%.In practice, the size of the valve varies with the size of the process line.


Knowledge: valve size and inch comparison table valve size (DN) and diameter comparison table


久久丫精品国产亚洲av不卡| 中文在线天堂网www| 欧美va亚洲va国产综合| 久久久久国色av免费看| 精品无码中文视频在线观看| 久草视频资源在线观看| 特黄大片aaaaa毛片| 亚洲av无码成人网站在线观看 | 东北女人毛多水多牲交视频| 樱花草在线社区www| aa级女人大片喷水视频免费| 粉嫩虎白女p虎白女在线| 久久久久无码精品国产h动漫| 女人被躁到高潮嗷嗷叫游戏| 亚洲一区二区三区在线观看网站| av无码小缝喷白浆在线观看| 久久丝袜精品综合网站| 中文字幕丰满乱子伦无码专区| 精品熟女碰碰人人a久久| 男人j放进女人p全黄| 亚洲av色吊丝无码| 国产欧美日韩一区二区三区 | 国产一卡2卡3卡四卡精品一信息 | 欧美成人免费一区二区| 88国产精品欧美一区二区三区| 国产成人免费永久播放视频平台| 国产真实伦对白视频全集| 免费jjzz在在线播放国产| 无码人妻精品丰满熟妇区| 又湿又紧又大又爽a视频| 精品无码人妻一区二区三区| 亚洲一区二区日韩欧美gif| 精品国产麻豆免费人成网站| 色吊丝中文字幕| 99在线精品视频在线观看| 女人18毛片a级毛片| 国产a三级久久精品| 乱妇乱女熟妇熟女网站| 一本大道一卡二大卡三卡免费| 国产夫妻在线视频| 无码一区18禁3d|